SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
Meta分析辅导+代找数据
SPSS+AMOS数据分析案例教程-关于中介模
SPSS视频教程内容目录和跳转链接
R语言快速入门视频教程
Python智联招聘数据分析
LCA潜在类别分析和Mplus应用
Amos结构方程模型数据分析入门教程
倒U关系回归分析中介效应和调节效应分析SPSS视频教程
统计咨询(图文问答)

stata教程07-常见样本量估计

在B站@mlln-cn, 我就能回答你的问题奥!

文章目录
  1. 1. 理论知识
  2. 2. 单样本均值检验
  3. 3. 对照组均值比较
  4. 4. 配对样本均值比较
  5. 5. 群组随机化设计(CRD)
  6. 6. ANOVA
    1. 6.1. Oneway ANOVA
    2. 6.2. Twoway ANOVA
  7. 7. 线性回归
    1. 7.1. 一元回归系数检验
    2. 7.2. 多元线性回归的R^2的显著性检验
  8. 8. 其他分析方法

我们常用PASS做样本量的计算, 不过本人更熟悉Stata, 所以我把常用的样本量计算情景都用stata实现了一遍, 希望对大家有用, 对自己也是一个备忘录。

理论知识

在估计样本量的时候, 我们通常需要知道自己预期的实验结果, 而有些统计指标需要在这里提前解释一下:

  • α显著性水平: 犯Ⅰ型错误的概率, 即H0假设为真, 但是我们却没有接受H0, 导致错误的抛弃了H0, 通常α取值0.05(双侧检验)
  • 1-β统计效能: β是犯Ⅱ型错误的概率, 即H1假设为真, 但是我们却没有接受H1, 导致错误的抛弃了H1, 通常β取值0.2, 即统计效能power取值0.8

单样本均值检验

已知总体均值, 想要知道样本均值是否等于总体均值。

案例:

考虑Tamhane和Dunlop(2000,209)的一个例子,该例子讨论了有改善SAT成绩口语部分的辅导计划。以前的研究发现学生
在没有任何教练计划的情况下重新参加SAT考试,他们的得分平均提高了15分, 标准差约为40分。一项新的教练计划声称可以提高40分。假设分数的变化大致为正态分布。该示例中感兴趣的参数是测试分数的平均变化。为了测试索赔,调查人员希望进行另一项研究并计算样本量, 需要使用5%显著性的双侧检验,80%的统计效能。我们假设总体的分数变化的标准差未知, 使用40分的估计值。

我们的stata命令是:

1
power onemean 15 40, sd(40)
输出(stream):
Performing iteration ... Estimated sample size for a one-sample mean test t test Ho: m = m0 versus Ha: m != m0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.6250 m0 = 15.0000 ma = 40.0000 sd = 40.0000 Estimated sample size: N = 23

结果现实, 我们只需要23个样本即可。

如果我们项使用1%的显著性, 可以写成:

1
power onemean 15 40, sd(40) alpha(.01)
输出(stream):
Performing iteration ... Estimated sample size for a one-sample mean test t test Ho: m = m0 versus Ha: m != m0 Study parameters: alpha = 0.0100 power = 0.8000 delta = 0.6250 m0 = 15.0000 ma = 40.0000 sd = 40.0000 Estimated sample size: N = 34

当然, 我们可以不指定备择假设的均值, 只需要指定差值即可:

1
power onemean 15, sd(40) diff(25)
输出(stream):
Performing iteration ... Estimated sample size for a one-sample mean test t test Ho: m = m0 versus Ha: m != m0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.6250 m0 = 15.0000 ma = 40.0000 diff = 25.0000 sd = 40.0000 Estimated sample size: N = 23

如果总体的标准差已知, 并且就是40, 可以这样写:

1
power onemean 15, sd(40) diff(25) knownsd
输出(stream):
Performing iteration ... Estimated sample size for a one-sample mean test z test Ho: m = m0 versus Ha: m != m0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.6250 m0 = 15.0000 ma = 40.0000 diff = 25.0000 sd = 40.0000 Estimated sample size: N = 21

更多案例, 请参考stata手册: https://www.stata.com/manuals/psspoweronemean.pdf

对照组均值比较

假如我们要检验两个均值之间的差异性是否显著, 原假设是H0: µ1 = µ2 , 备择假设是s Ha: µ1 != µ2, 从文献中得知两个样本均值大概为8和12, 标准差均为9, 统计检验力为0.8, 显著性水平设置为0.05, 我们可以这样计算样本量:

1
power twomeans 8 12, sd(9)
输出(stream):
Performing iteration ... Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sd Ho: m2 = m1 versus Ha: m2 != m1 Study parameters: alpha = 0.0500 power = 0.8000 delta = 4.0000 m1 = 8.0000 m2 = 12.0000 sd = 9.0000 Estimated sample sizes: N = 162 N per group = 81

假如m2可能的取值是10-14:

1
power twomeans 8 (10(1)14), sd(9)
输出(stream):
Performing iteration ... Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sd Ho: m2 = m1 versus Ha: m2 != m1 +-------------------------------------------------------------------------+ | alpha power N N1 N2 delta m1 m2 sd | |-------------------------------------------------------------------------| | .05 .8 638 319 319 2 8 10 9 | | .05 .8 286 143 143 3 8 11 9 | | .05 .8 162 81 81 4 8 12 9 | | .05 .8 104 52 52 5 8 13 9 | | .05 .8 74 37 37 6 8 14 9 | +-------------------------------------------------------------------------+

如果是单侧检验:

1
power twomeans 8 (10(1)14), sd(9) oneside
输出(stream):
Performing iteration ... Estimated sample sizes for a two-sample means test t test assuming sd1 = sd2 = sd Ho: m2 = m1 versus Ha: m2 > m1 +-------------------------------------------------------------------------+ | alpha power N N1 N2 delta m1 m2 sd | |-------------------------------------------------------------------------| | .05 .8 504 252 252 2 8 10 9 | | .05 .8 224 112 112 3 8 11 9 | | .05 .8 128 64 64 4 8 12 9 | | .05 .8 82 41 41 5 8 13 9 | | .05 .8 58 29 29 6 8 14 9 | +-------------------------------------------------------------------------+

配对样本均值比较

配对样本T检验样本量的计算:

  • 假设: H0: µ2 − µ1 = d = 0 versus H1: d != 0
  • 均值: ma1 = 73 ma2 = 57
  • 标准差均为:σ= 36
  • power: 0.8
  • 显著性: α = 0.05
1
power pairedmeans 73 57, sddiff(36)
输出(stream):
Performing iteration ... Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d != d0 Study parameters: alpha = 0.0500 ma1 = 73.0000 power = 0.8000 ma2 = 57.0000 delta = -0.4444 d0 = 0.0000 da = -16.0000 sd_d = 36.0000 Estimated sample size: N = 42

我们也可以只指定两个均值的差异量:

1
power pairedmeans, altdiff(-16) sddiff(36)
输出(stream):
Performing iteration ... Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d != d0 Study parameters: alpha = 0.0500 power = 0.8000 delta = -0.4444 d0 = 0.0000 da = -16.0000 sd_d = 36.0000 Estimated sample size: N = 42

有时候我们可以指定两个样本的相关系数:

1
power pairedmeans 73 57, corr(.5) sd1(29) sd2(40)
输出(stream):
Performing iteration ... Estimated sample size for a two-sample paired-means test Paired t test Ho: d = d0 versus Ha: d != d0 Study parameters: alpha = 0.0500 ma1 = 73.0000 power = 0.8000 ma2 = 57.0000 delta = -0.4470 sd1 = 29.0000 d0 = 0.0000 sd2 = 40.0000 da = -16.0000 corr = 0.5000 sd_d = 35.7911 Estimated sample size: N = 42

更多案例请参考stata手册: https://www.stata.com/manuals/psspowerpairedmeans.pdf

群组随机化设计(CRD)

考虑一个来自Ahn,Heo和Zhang(2015,37)的群组随机化设计的例子
试验的目的是评估健康促进计划对提高运动水平的影响。在这个研究中,
教会是随机化的分组单位,个体参与者是被分析的对象。教会将被随机分配到实验组
和对照组。调查人员计划从每个教会招募20名被试,并希望检测实验组和对照组之间的平均差异为1.1千卡/千克/天
。从以前的研究来看,共同的标准偏差是
3.67千卡/千克/天。研究者假设组内相关系数为0.025。

stata命令是:

由于对照组的均值大小并不影响最终的结果, 所以我们让对照组的均值为0。

1
power twomeans 0 1.1, m1(20) m2(20) sd(3.67) rho(0.025)
输出(stream):
Performing iteration ... Estimated numbers of clusters for a two-sample means test Cluster randomized design, z test assuming sd1 = sd2 = sd Ho: m2 = m1 versus Ha: m2 != m1 Study parameters: alpha = 0.0500 power = 0.8000 delta = 1.1000 m1 = 0.0000 m2 = 1.1000 sd = 3.6700 Cluster design: M1 = 20 M2 = 20 rho = 0.0250 Estimated numbers of clusters and sample sizes: K1 = 13 K2 = 13 N1 = 260 N2 = 260

关于群组随机化的更多例子, 可以参考stata手册: https://www.stata.com/manuals/psspowertwomeanscluster.pdf

ANOVA

Oneway ANOVA

用于多组均值的比较, 举一个例子, 假设有三个分组:

  • 假设H0: µ1 = µ2 = µ3
  • 从以往研究中估计三组均值为: 21, 19, 18
  • 三组共同方差是16
  • alpha = 0.05
  • beta = 0.2

stata命令是:

1
power oneway 21 19 18, varerror(16)
输出(stream):
Performing iteration ... Estimated sample size for one-way ANOVA F test for group effect Ho: delta = 0 versus Ha: delta != 0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.3118 N_g = 3 m1 = 21.0000 m2 = 19.0000 m3 = 18.0000 Var_m = 1.5556 Var_e = 16.0000 Estimated sample sizes: N = 105 N per group = 35

ANOVA的更多案例可以参考手册: https://www.stata.com/manuals/psspoweroneway.pdf

Twoway ANOVA

假设有一个2x3的分组设计, 各组的均值分别是: 19 18 32 \ 23 25 26, 组内方差为27, 我们可以这样计算样本量:

1
2
matrix cm = (19, 18, 32 \ 23, 25, 26)
power twoway cm , varerror()
输出(stream):
Performing iteration ... Estimated sample size for two-way ANOVA F test for row effect Ho: delta = 0 versus Ha: delta != 0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.8333 N_r = 2 N_c = 3 means = Var_r = 0.6944 Var_e = 1.0000 Estimated sample sizes: N = 18 N per cell = 3

更多Twoway ANOVA的案例可以看手册: https://www.stata.com/manuals/psspowertwoway.pdf

线性回归

一元回归系数检验

考虑一项假设性研究,其目标是调查每天锻炼时间对BMI的影响。
感兴趣的参数是斜率系数b。
我们的零假设是H0:b = 0,
我们希望计算BMI下降0.1 kg/m2所需的样本量
,使用5%级别的双侧检验,power为80%。我们假设锻炼时间的标准差为10
和BMI的标准差为4。

我们可以这样计算样本量:

1
power oneslope 0 -0.1, sdx(10) sdy(4)
输出(stream):
Performing iteration ... Estimated sample size for a linear regression slope test t test Ho: b = b0 versus Ha: b != b0 Study parameters: alpha = 0.0500 power = 0.8000 delta = -0.2582 b0 = 0.0000 ba = -0.1000 sdx = 10.0000 sderror = 3.8730 sdy = 4.0000 Estimated sample size: N = 120

多元线性回归的R^2的显著性检验

R^2显著可以证明回归方程中至少有一个回归系数不为零。

  • 假设: H0: R2 = 0
  • 备择的R2取值是0.1
  • α = 0.05
  • power 0.8
  • 2个协变量

stata命令是:

1
power rsquared 0.10, ntested(2)
输出(stream):
Performing iteration ... Estimated sample size for multiple linear regression F test for R2 testing all coefficients Ho: R2_T = 0 versus Ha: R2_T != 0 Study parameters: alpha = 0.0500 power = 0.8000 delta = 0.1111 R2_T = 0.1000 ntested = 2 Estimated sample size: N = 90

参考手册: https://www.stata.com/manuals/psspowerrsquared.pdf

其他分析方法

在官方文档中有大量的案例, 包括均值比较/百分比比较/方差/相关分析/生存分析等, 大家都可以在这个页面找到: https://www.stata.com/features/power-and-sample-size/

注意
本文由jupyter notebook转换而来, 您可以在这里下载notebook
统计咨询请加QQ 2726725926, 微信 mllncn, SPSS统计咨询是收费的
微博上@mlln-cn可以向我免费题问
请记住我的网址: mlln.cn 或者 jupyter.cn

统计咨询

统计咨询请加入我的星球,有问必回

加入星球向我提问(必回),下载资料,数据,软件等

赞助

持续创造有价值的内容, 我需要你的帮助